爱看读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

对于萨纳克教授来说,看论文是一件很经常的事情,毕竟作为《数学年刊》的主编,需要他审稿的论文是很多的。

尤其是那些有潜力登上《数学年刊》的投稿,不管是符合他研究领域的,还是不符合他研究领域的,他很多都看过。

所以现在让他来看林晓的这篇报告,也算是找对人了,尤其是这种数论领域的成果。

他当初拿到沃尔夫数学奖,就和他在数论领域做出的贡献有关。

同样,也正如蓬皮埃利教授说的那样,没有哪个数学家不会对这些素数问题感到有兴趣,毕竟它们看起来是那么的简单明了,不就是一个个的正整数嘛,虽然在解决问题的过程中少不了要用到各种奇形怪状甚至是繁杂的数学符号,有时候也得用上根号来让它变得不再是整数,但是总归看上去很简洁嘛!

不然的话,为什么民科们热衷于解决哥德巴赫猜想而不是黎曼猜想?

因为他们凭借自己九年义务教育得到的知识都能看懂哥德巴赫猜想,于是就凭借着一腔胆识冲了上去。

至于黎曼猜想,他们大概还得问一下这个ζ函数是个啥,更不用说其中还涉及到了复平面、复分析之类的,这让他们来搞,哪怕是想要找个地方入手,恐怕还得去学习一下复分析,而学习复分析之前还得学一下数学分析,只不过学完这些之后,他们大概就清楚自己曾经的想法有多年少无知了。

总而言之,素数问题看起来很简洁,梅森素数也是如此,以至于萨纳克教授也曾经研究过这些东西。

不过,林晓的这篇论文中,解决梅森素数的问题是在最后的十页中,前面六十多页,主要就是讨论将模形式论和群论结合,从而实现对多项式的变换。

所以萨纳克教授现在看的就是这个部分。

“嗯……前面这个变换,似乎有点意思,好像就是他那篇论文里面的方法?嗯,是整理出来了嘛。”

看到这,他无奈地摇摇头,其实到这里就行了,林晓已经可以将前面这部分内容作为报告,到时候在大会上进行演讲了,这也是萨纳克教授当初以为林晓要搞的。

只不过,现在也才到第十三页,后面还有一大堆呢。

这个林晓,搞出的到底是什么骚操作啊……

他总算知道为什么维亚纳教授会找他来看林晓的这篇报告了,大概是维亚纳教授也觉得林晓不按套路出牌,于是就找他这个始作俑者来看看该如何处理。

轻轻摇摇头,那还能咋办,只能继续看呗。

但他还是希望,自己能收到最后的那份‘喜’,不论如何,那也是自己看中的年轻人嘛。

而后,他便继续往下看去。

很快,他看到一行式子。

【tr(pf,λ(frobp))=c(p,f)…det(pf,λ(frobp))=Ψ?(p)n(p)^k0?1……】

“这一步……有点意思。”

他又往下面看去。

【pf,λ:=pf,λ(modλ):gf→gl2(fλ)……】

越看,他的眼睛也越发凑近了屏幕,想让自己看得更加清楚一些。

因为,到这附近的变换,他的思维也随之跟进,脑海中也仿佛有两根弦,忽然接在了一起,然后奏响了起来。

这一步,让他也感到了惊叹!

“竟然还能用这种方法,实在是有些太不可思议了,或者说……太大胆了!”

他默念着,脑袋也跟着感慨似的摇晃起来。

“这年轻人的想法,真是和我这种老家伙都不一样了。”

忽然想起什么,他又从旁边那扯来了草稿纸,开始演算起来。

就这样,时间慢慢过去,办公室里,萨纳克教授的其他学生看着萨纳克教授的样子,都不知道他为何如此感慨。

他以前审稿的时候可没有过这种情况啊?

有一位研究生借着帮教授泡咖啡的名义,走上去拿起萨纳克的咖啡杯,然后往电脑上瞅了一眼,看了一会儿后,他也茫然了,这又是哪位大佬的论文?

这好像是数论吧,又不像是数论,其中还有一些同态群构造,好像还有一点模形式的理论在里面,难不成是哪位研究朗兰兹纲领的大牛?

这位普林斯顿大学数学在读博士放弃了思考,选择老老实实地给教授泡咖啡去了。

就这样,时间慢慢过去。

七十多页的论文,当然很长,虽然前面十几页比较好理解,很快就能够看完,但是中间的四十多页可就没有这么容易了,由于已经涉及到了一种新的数学方法,所以萨纳克教授也得严谨对待。

东海岸的风从白天吹到了傍晚,直到太阳消失在普林斯顿这座充满了乡村风光的城际线西边时,办公室内,萨纳克教授终于抬起了自己的头。

“大概,高斯当初也是这样的惊才绝艳吧……”

他微微慨叹一声,从这篇论文中,他看到了大数学家的思想在其中迸发,仿佛真理于其中孕育。

历史上所有着名的科学家们,人生中最重要的成果都是于20到40岁之间作出的,比如爱因斯坦的相对论,再比如牛顿的微积分、万有引力定律等等。

而这个林晓,如今才18岁,却已经创造出了这般极其出色的数学理论,并且终结了梅森素数分布规律这个问题。

从两千三百年前,几何之父欧几里得开始对这个问题进行研究以来,直到如今不知道多少大数学家们前赴后继,不断地尝试在2^p-1这个极其简单的形式上实现突破,直到如今,终于在这个十八岁的少年手上完成了最后的成果。

如果说这就是林晓的巅峰时期,萨纳克教授自然是不信的。

要是用正态分布的图像来说的话,他认为,林晓此时的状态,正处于图像左边的某个地方,距离最高的位置,仍然还有很长的一段距离。

不过,这也只是他所认为的而已,至于林晓真的是正态分布图像,还是y=x2(x>0),那就不得而知了。

爱看读书推荐阅读:古武之日出东方我在万界锄大地神秘复苏之遗忘世间影视世界无限之旅越界沉沦我在超神宇宙考古两万年影视都市之旅末世独宠末世:神秘入侵快穿之总有人想攻略我九皇印破产魔王战记盗墓之幽冥求长生宇宙狂想曲末日侵袭之无限进化奇门宗师机械降神随身带着法神异世剑神我脑里有个微信系统原石纪元我在末世开大巴盛宠纨绔妃女扮男装闯星际,大佬都想独占我寻墓人超时空走私全球轮回,只有我知道港综剧情!快穿女配抢气运后,被男主们疯舔快穿之偏执男配恋不停异闻谜录无限位面窃取被丧尸包养的日子重生末世前觉醒五大纹身随身携带恶魔果树无限诸天吃货重生星际阵器师世界online猎凶黑幕我就打你两下,你砍了我十万刀?三修奇仙快穿之大佬偏要宠反派我真的不想谈恋爱快穿:废柴也逆天星际大佬她直播又宠又撩崩坏:星穹铁道快穿之炮灰升级指南一半人一半尸武侠仙侠大兑换我的歌后女友奋斗不息在末世
爱看读书搜藏榜:末世魔侣我在末日捡空投影视世界无限之旅打造幻想世界快穿之男神游记大具现师我能幻想成真影视世界成神传斩月越界沉沦我在末世食物自由包养校花萝莉星际战场从直播开始邪佛恐怖长生萝莉的赛博世界生存指南维度仲裁者超级掠食者系统快穿被男主养成的那些日子我,人工智能魇日纪元我有一舰载星河我在超神宇宙考古两万年末世异能之莲依无限电影群为死者代言诸天:从屠龙开始融合万物末日我在尸群当中睡大觉末世:大小姐的贴身保镖在港综吃成传奇至强创世超级细菌分身星际最强打工人实锤快穿后我成了反派的心头宠第七小队的XX日常快穿之戏精宿主娇又媚情深案浅之反穿福妻神雕醉公子穿越异世的领主大人影视都市之旅星空:创世祖神终极弑仙系统太阳系之心的呼唤我的暗恋对象变死对头后武破魔天她有特殊逆袭方法末日合成专家变异围城之极度恐惧虚拟神格贼行诸天末世:小心身边的人神血战士
爱看读书最新小说:全球高温,我的安全屋里全是女神林光宇轮回刺谈PIT星际纪元:艾莉的命运抉择星际兽世:小玫瑰竟是最美雌性!我只是一个修机甲的都末日了,老娘要独美捡到传国玉玺末世觉醒避难所系统恋爱有的话也该轮到我了十年末世:满级大佬去种田银河新篇续末日危机:机器人反噬人类超稀有SS级向导,被哨兵疯抢生存游戏:囤货,一囤一个不吱声末世重生:我靠安全车囤物斩尸末世狂薅:薅垮米曰,薅哭全球!冰封末世:我抢了柳如烟的避难所地球遗弃?我反手改造成行星飞船炮灰女配?我和闺蜜手撕末日剧情大宇航时代:从佣兵开始机动苍穹末世:绝美总裁让我只收女的小尸尸我啊!被疯批反派圈养了百日绝地求生我在星际捡神明星际兽世:绝色雌性她是万人迷我在末世做宅女回到末世百天前,变卖家产狂囤货末世余晖:废墟中的希望养猪佬的末日生存日记末世重生,团宠竟然是我?快穿:绝嗣大佬日日都想和她贴贴社恐小可怜?她大名深渊暴虐龙!哥斯拉:至暗时刻末世异能科技云霄之顶不正经系统和新手主角末世不给异能,但可以自带打手丧尸爆发:开局从女寝逃出生天囤满几百万吨物资带爸妈末世求生当幻想照进现实:独夫的崩灭公元2077沙漠体裂变圣纪:虚空之主的崛起殿下,您该回家了超能:我在十一维空间轮回赛博朋克灵异之旅尘寰司令官我在末世苟成大佬活尸下的钓鱼佬