爱看读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

第 203 章 绝对值之妙理

数日又过,戴浩文再登讲堂,欲授学子以绝对值之概念。其容端肃,目光深邃,执一卷书,缓声道:“今日吾与汝等研讨绝对值之妙理,望尔等倾心聆听,用心领悟。”

言罢,于黑板之上书一数字,曰:“此数为负三,其绝对值为何?”

众学子面面相觑,稍作思索。一胆大之学子起身答曰:“先生,负三之绝对值为三。”

戴浩文微微点头,曰:“善。绝对值者,乃数于数轴之上距零之距离也。不论正负,其距零之距恒为正,此乃绝对值之要义。”

遂又书数“正五”,问曰:“此数之绝对值若何?”

众学子齐声应曰:“亦为五。”

戴浩文笑曰:“诚然。吾再举一例,若有一数为零,其绝对值又当如何?”

一聪慧学子抢答曰:“先生,零之绝对值即为零也。”

戴浩文抚掌赞曰:“妙哉!汝等已初窥门径。今思之,若有数负七,其绝对值之算式当如何书?”

学子们纷纷动笔,片刻后,一生答曰:“当书为| - 7 | = 7 。”

戴浩文曰:“善。吾再出一题,若知一数之绝对值为八,此数可为几何?”

堂下一时静谧,少顷,有学子言道:“先生,此数可为正八或负八。”

戴浩文曰:“极是。由此可见,知绝对值而求原数,当有两解,一正一负。”

又书一题:“若 | x - 2 | = 5 ,求 x 之值。”

众学子陷入沉思,纷纷推演计算。一学子起身道:“先生,若 x - 2 为正,则 x - 2 = 5 ,x 为 7 ;若 x - 2 为负,则 x - 2 = -5 ,x 为 -3 。”

戴浩文欣然曰:“善。再观此题,若 | 2x + 3 | = 7 ,又当如何求解?”

学子们分组讨论,各抒己见。须臾,有一组代表起身曰:“先生,若 2x + 3 为正,则 2x + 3 = 7 ,解得 x 为 2 ;若 2x + 3 为负,则 2x + 3 = -7 ,解得 x 为 -5 。”

戴浩文点头曰:“不错。绝对值之理,于方程求解中多有应用。今再思之,若 | x | < 3 ,则 x 之取值范围若何?”

众学子苦思冥想,一学子曰:“先生,此意为 x 距零之距离小于三,故 x 大于负三而小于正三。”

戴浩文曰:“善。若 | x | > 5 ,又当如何?”

一生应曰:“先生,此则为 x 小于负五或 x 大于正五。”

戴浩文曰:“妙极。吾再出一题稍难者。若 | 3x - 1 | ≤ 4 ,求 x 之范围。”

学子们奋笔疾书,演算良久。一学子上台板书其解:“若 3x - 1 为正,则 3x - 1 ≤ 4 ,解得 x ≤ 5 \/ 3 ;若 3x - 1 为负,则 3x - 1 ≥ -4 ,解得 x ≥ -1 。故 x 大于等于负一且小于等于五分之三。”

戴浩文微笑曰:“甚好。绝对值之概念,亦用于不等式之求解,需谨慎分析,莫出差错。”

又曰:“今有一数轴,点 A 对应之数为 x ,其绝对值为 2 ,点 b 对应之数为 y ,其绝对值为 3 ,且点 A 在点 b 之左,求 x 、 y 可能之值及 A 、 b 两点间距。”

众学子沉思片刻,纷纷作答。一学子言:“先生, x 可为正负 2 , y 可为正负 3 。因点 A 在点 b 之左,故当 x 为 2 时, y 为 3 ,间距为 1 ;当 x 为 -2 时, y 为 3 ,间距为 5 ;当 x 为 2 时, y 为 -3 ,间距为 5 ;当 x 为 -2 时, y 为 -3 ,间距为 1 。”

戴浩文曰:“甚是详尽。绝对值之理,于数轴之上,可明数之位置与距离,颇有用处。”

继而再出一题:“若 | a + 1 | + | b - 2 | = 0 ,求 a 、 b 之值。”

众学子交头接耳,议论纷纷。一学子起身曰:“先生,绝对值皆为非负,二者之和为零,则 | a + 1 | = 0 且 | b - 2 | = 0 ,故 a 为 -1 , b 为 2 。”

戴浩文抚须曰:“聪慧!此类题需明绝对值之非负性。”

时光渐逝,日已偏西,戴浩文曰:“今日所讲绝对值之概念,尔等当反复温习,多加思索。明日吾将再考汝等。”

众学子行礼而退,皆心有所思。

次日,戴浩文复至讲堂,先回顾昨日所学,而后又出数题。

“若 | x - 3 | + | x + 2 | = 7 ,求 x 之值。”

学子们静心思考,逐一演算。

一学子上前作答:“先生,当分三段讨论。若 x 小于等于 -2 ,则 3 - x - x - 2 = 7 ,解得 x = -3 ;若 x 大于 -2 且小于 3 ,则 3 - x + x + 2 ≠ 7 ,无解;若 x 大于等于 3 ,则 x - 3 + x + 2 = 7 ,解得 x = 4 。”

戴浩文曰:“善。再看此题,若 | 2x - 1 | - | x + 3 | = 2 ,求 x 之范围。”

众学子分组探讨,各抒己见。

一组代表起身言曰:“先生,亦当分段讨论。若 x 小于等于 -3 ,则 1 - 2x + x + 3 = 2 ,解得 x = 2 ,不合条件;若 x 大于 -3 且小于 1 \/ 2 ,则 1 - 2x - x - 3 = 2 ,解得 x = -4 \/ 3 ;若 x 大于等于 1 \/ 2 ,则 2x - 1 - x - 3 = 2 ,解得 x = 6 。”

戴浩文点头曰:“不错。此类题需细心思量,莫漏解也。”

又出一题:“若关于 x 之方程 | 3x - 5 | = m 有解,求 m 之取值范围。”

一学子应曰:“先生,因绝对值非负,故 m 大于等于零方程有解。”

戴浩文曰:“然也。再思此题,若关于 x 之不等式 | 2x + 1 | > a 恒成立,求 a 之范围。”

一生答曰:“先生,因 | 2x + 1 | 最小值为零,故 a 小于零不等式恒成立。”

戴浩文笑曰:“妙哉!汝等悟性颇高。”

如此数日,戴浩文以种种实例,令学子们对绝对值之概念与应用愈发精通。

或有一题:“已知 | x - 1 | + | y + 2 | = 0 ,且 2x + 3y + z = 10 ,求 z 之值。”

众学子深思熟虑,终得答案。

戴浩文一一评点,使众人皆有所获。

又有:“若 | x - 2 | + | 2x - 1 | = 5 ,求 x 之值。”

学子们争论不休,各执一词,最终在戴浩文的引导下,得出正解。

光阴似箭,学子们于绝对值之研学中渐入佳境。

一日,戴浩文考校学子,见众人应答如流,心甚慰之。

曰:“汝等学业有成,然不可骄矜,数学之道,广袤无垠,当持之以恒,上下求索。”

众学子躬身行礼,谨遵师训。

自此,学子们怀绝对值之理,续探数学之奥秘。

爱看读书推荐阅读:爆笑家斗:庶妃不好惹大明:诏狱讲课,老朱偷听人麻了烽火连城水浒:李世民一统江山妾色天才纨绔大周:我家公主太可爱了一剑破道一宠成婚:萌妻乖乖入怀抗战之太行山上成为大清皇帝吧,崇祯!穿越1630之崛起南美内小军阀回到明末做枭雄汉末军阀大秦之天柱崛起三国之汉域无疆大唐:开局邀请李二造反矛与盾与罗马帝国中天稗史三国:狱中讲课,我教曹操当奸雄凤逆天下北月篇冥王倾世,神医废柴妃换不幻洪武大帝?本太子的傀儡而已!我让历史拐个弯之明劫从嬴政开始盘点抗日之兵王传说割据自立后,我强娶了敌国太后大秦:开局成为墨家钜子抗战从一把信号枪开始我的亮剑后勤生涯妖族高手在校园回到前世做大牛后汉英雄志勇者之恋,宝藏之秘嫡女当自强快穿:躺平仙尊万界溜达穿越后我把娘子宠上天铁血西军:大宋杨家将后传我的葡萄牙帝国大夏第一假太监大唐:距离玄武门之变,仅剩七天醉三千,篡心皇后谍影无声一品驸马穿越异世,成就千古一帝穿越到明朝利用现代科技制霸全球通史演义隋末一小兵
爱看读书搜藏榜:海贼之无上剑豪全面战争:从三国开始签到风起大浩我娘子天下第一跟着小说看历史大秦:蒙府赘婿富可敌国乱说天国赵公子重生岳飞之还我河山大秦:公子长青的逆天之路从净身房开始权倾天下三国主播大传重生:从小兵开始争霸天下爆笑家斗:庶妃不好惹大夏十三太保大明:你真是朕的好大儿大唐:刚造反,被武则天偷听心声拯救大秦朝残阳起风雷晋乱嗜血猎杀红楼之庶子无双大明流匪师士传说我和房车回古代我家医馆通古代,朱标上门求医三国先弄个不死之身再开局宋桓帝玲珑嫡女之谋嫁太子妃万灵之域重生之在古代翻云覆雨三国:我吕布,白门楼开局明末第四天灾谋明天下一世婚宠:总裁娇妻太撩人华兴传被刘备赶走后,曹操拜我首席军师我,杨丰智:乱世雄主!在他心头放肆我的大明新帝国明朝好女婿三国之绝望皇帝路医入白蛇腹黑娘亲爆萌宝:九王,太凶猛圣朝皇子公主们别追了,我娶了还不行吗?香炉通古今:我养成了大乾女帝!穿越异时空的幸福生活女尊之倾城王女乱天下中世纪王者之路
爱看读书最新小说:手持玉玺,谁惹砸谁,老朱麻了不当谋士的我汉末求生三国:我们还没争霸呢,就改朝换代了!吴主朕就是中兴之主剧透三国:从桃园结义开始大明:穿越朱祁钰,带领大明走向日不落异界:从小兵开始崛起我为她们建了个国我在三国肝技能三国召唤之巅峰之上剧透大隋,我有一个争霸天下系统回春朝:这该死的妇道守不住了崇祯:嘿!大臣们太努力了!大明不能亡逍遥王养成记大明,你的崇祯回来了绿罗也是罗马大唐最强私生子洗尽铅华兴汉季明末大文魁古今交换,我成了女帝背后的男人大宋一统:从拯救苏轼开始异世科技帝皇河东崛起龙符令诸葛亮重生,一切尽在掌握!大秦:别拿小兵不当干粮阴谋天下秦二世隋唐演义群英传豪情德克萨斯春秋:从荒野乞活到成为霸主我,八阿哥胤禩,大义灭清!汴夏权倾大秦:从成为假太监入宫开始杀杀人,泡泡妞大明:我都修仙了非让我当皇帝?皇极降世召唤系统:我以大汉铁骑霸天下大明:朕才是帝国之主镇国二公子大秦,开局一把贫铀剑最强藩王造反,老朱喜当太上皇!援明传命运之局之朝天的野望公主啊!驸马他又双叒跑了!秦风烈:谋士沉浮录武松日记三分天下?问过我身后十万铁骑吗