爱看读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

第 210 章 三角换元法之探

又一日,学堂之内,戴浩文再开新篇。

戴浩文缓声道:“今日为师要与尔等讲授另一奇妙之法,名曰三角换元法。”

众学子皆屏气凝神,静待下文。

李华拱手问道:“先生,此三角换元法又是何意?”

戴浩文微笑答道:“且看,若有方程 x2 + y2 = 1,吾等可设 x = cosθ,y = sinθ,此即为三角换元。”

张明面露疑惑:“先生,为何如此设之?”

戴浩文耐心解释道:“诸君可知三角函数之特性?cos2θ + sin2θ = 1,恰与吾等所给方程相符。如此设之,可使求解之路径明晰。”

王强问道:“那若方程为 x2 + 4y2 = 4,又当如何?”

戴浩文道:“此时,可设 x = 2cosθ,y = sinθ。如此,原方程便化为 4cos2θ + 4sin2θ = 4,正合题意。”

赵婷轻声道:“先生,此设颇有巧妙之处。”

戴浩文点头道:“然也。再看若有式子 √(1 - x2),吾等设 x = sinθ,则此式可化为 √(1 - sin2θ) = cosθ 。”

李华思索片刻道:“先生,此换元法于解题有何妙处?”

戴浩文笑曰:“其妙处众多。若求函数之最值,或化简复杂之式,皆能大显身手。譬如,求函数 x + √(1 - x2) 之值域。”

众学子纷纷低头思索。

戴浩文见状,提示道:“已设 x = sinθ,代入可得 sinθ + cosθ 。诸君可还记得两角和之公式?”

张明恍然道:“先生,吾记得,sinθ + cosθ = √2sin(θ + π\/4) 。”

戴浩文赞道:“善!由此可知其值域为 [-√2, √2] 。”

王强又问:“先生,若式中含分式,又当如何?”

戴浩文道:“莫急,若有式子 (1 - x2) \/ (1 + x2) ,设 x = tanθ ,则可化简求解。”

赵婷道:“先生,此中计算恐有繁难之处。”

戴浩文道:“不错,然只要步步为营,细心推之,必能解出。”

说罢,戴浩文在黑板上详细演示计算过程。

......

如此讲学许久,学子们对三角换元法初窥门径。

戴浩文又道:“今留数题,尔等课后细细思索。若有不明,来日再论。”

学子们领命而去,皆欲深研此奇妙之法。

数日之后,众学子再次齐聚学堂。

戴浩文扫视众人,缓声问道:“前几日所授三角换元法,尔等可有研习?”

学子们纷纷点头,李华率先说道:“先生,学生课后反复思索,略有心得,然仍有诸多不明之处。”

戴浩文微笑道:“但说无妨。”

李华拱手道:“若方程为 9x2 + 16y2 = 144,该如何进行三角换元?”

戴浩文答道:“可设 x = 4cosθ,y = 3sinθ。如此一来,原方程化为 16cos2θ + 9sin2θ = 144,与原式契合。”

王强接着问道:“先生,那对于形如 √(x2 - 2x + 1) 这样的式子,又当如何三角换元?”

戴浩文耐心解释道:“先将其化为 √((x - 1)2) = |x - 1| ,再设 x - 1 = t ,若要三角换元,可令 t = sinθ 。”

赵婷疑惑道:“先生,为何有时设 x = cosθ ,有时又设 x = sinθ 呢?”

戴浩文道:“此需视具体问题而定。若方程或式子之形式与 cosθ 或 sinθ 之特性相关,便按需设之。”

张明道:“先生,三角换元法在求定积分时可有应用?”

戴浩文点头道:“自然有。譬如求∫(0 到 1) √(1 - x2) dx ,设 x = sinθ ,则可将其化为三角函数之积分,求解更为简便。”

说罢,戴浩文在黑板上详细推演计算过程。

“诸位且看,如此换元之后,积分上下限亦需相应变换。”

学子们目不转睛,仔细聆听。

王强道:“先生,那若遇复杂之复合函数,可否用三角换元?”

戴浩文笑曰:“只要能寻得恰当之替换关系,未尝不可。就如函数 f(x) = √(2 - x - x2) ,先将其内部配方,再进行三角换元。”

戴浩文边讲边写,学子们不时点头,似有所悟。

李华又问:“先生,三角换元法与均值换元法可有相通之处?”

戴浩文沉思片刻,道:“二者皆为换元之法,旨在简化问题。均值换元常以均值为桥梁,而三角换元则借助三角函数之特性。然具体运用,需依题而定。”

......

戴浩文滔滔不绝,讲解不停,学子们或问或思,气氛热烈。

不知不觉,日已西斜。

戴浩文轻咳一声,道:“今日所讲,尔等回去需多加温习。数学之道,在于勤思多练,方能融会贯通。”

学子们躬身行礼:“谨遵先生教诲。”

众人散去,然对三角换元法之探索,方兴未艾。

又过数日,课堂之上。

戴浩文道:“今来考查一番尔等对三角换元法之掌握。”

遂出一题:求函数 y = x + √(2 - x2) 的最大值。

学子们纷纷提笔计算。

片刻后,赵婷起身道:“先生,学生设 x = √2 cosθ ,解得最大值为√2 。”

戴浩文微微颔首:“不错。那再看此题,若 x、y 满足 x2 + y2 - 2x + 4y = 0 ,求 x - 2y 的最大值。”

众学子再度陷入沉思。

张明道:“先生,可否设 x - 2y = z ,将其转化为直线与圆的位置关系,再用三角换元求解?”

戴浩文抚掌大笑:“妙哉!果能举一反三。”

就这样,在戴浩文的悉心教导下,学子们在三角换元法的海洋中不断探索,学问日益精进。

......

时光荏苒,学子们在数学的世界里越走越远,而三角换元法也成为他们攻克难题的有力武器。

爱看读书推荐阅读:烽火连城一剑破道爆笑家斗:庶妃不好惹大明:诏狱讲课,老朱偷听人麻了水浒:李世民一统江山妾色天才纨绔大周:我家公主太可爱了一宠成婚:萌妻乖乖入怀抗战之太行山上成为大清皇帝吧,崇祯!穿越1630之崛起南美内小军阀汉末军阀三国之汉域无疆大唐:开局邀请李二造反矛与盾与罗马帝国中天稗史三国:狱中讲课,我教曹操当奸雄冥王倾世,神医废柴妃换不幻洪武大帝?本太子的傀儡而已!我让历史拐个弯之明劫从嬴政开始盘点抗日之兵王传说大秦:开局成为墨家钜子抗战从一把信号枪开始我的亮剑后勤生涯妖族高手在校园后汉英雄志嫡女当自强穿越后我把娘子宠上天铁血西军:大宋杨家将后传我的葡萄牙帝国大夏第一假太监醉三千,篡心皇后谍影无声一品驸马穿越异世,成就千古一帝穿越到明朝利用现代科技制霸全球隋末一小兵隋末之大夏龙雀从士兵突击开始的最强兵王一品女状元精灵世界的怪奇训练家无敌逍遥帝君红楼之开局尤氏找上门穿越大宋之我想做好人拔刀!全军冲阵唐朝好郎君
爱看读书搜藏榜:海贼之无上剑豪全面战争:从三国开始签到风起大浩我娘子天下第一跟着小说看历史大秦:蒙府赘婿富可敌国乱说天国赵公子重生岳飞之还我河山大秦:公子长青的逆天之路从净身房开始权倾天下三国主播大传重生:从小兵开始争霸天下爆笑家斗:庶妃不好惹大夏十三太保大明:你真是朕的好大儿大唐:刚造反,被武则天偷听心声拯救大秦朝残阳起风雷晋乱嗜血猎杀红楼之庶子无双大明流匪师士传说我和房车回古代我家医馆通古代,朱标上门求医三国先弄个不死之身再开局宋桓帝玲珑嫡女之谋嫁太子妃万灵之域重生之在古代翻云覆雨三国:我吕布,白门楼开局明末第四天灾谋明天下一世婚宠:总裁娇妻太撩人华兴传被刘备赶走后,曹操拜我首席军师我,杨丰智:乱世雄主!在他心头放肆我的大明新帝国明朝好女婿三国之绝望皇帝路医入白蛇腹黑娘亲爆萌宝:九王,太凶猛圣朝皇子公主们别追了,我娶了还不行吗?香炉通古今:我养成了大乾女帝!穿越异时空的幸福生活女尊之倾城王女乱天下中世纪王者之路
爱看读书最新小说:成为土豪之后,身边美女如云被诬陷造反,我反手自己当皇帝异世争霸之顶峰召唤大唐:带着小公主去旅行和林黛玉先婚后爱三国之龙:杨磊的霸途快穿:躺平仙尊万界溜达抗日保安团神鸦社鼓杨小瓜的穿越人生开局背抡语,怎么夫子破防了?带着闺女混大唐公主陪我当神探旧五代史品读迷雾星球的曙光为国付出十八载,回来废长立幼?江山泪:美人劫皇帝假死?不管了,我直接登基!穿越古代之尊荣之路被奸人所害后,我居然重生了!穿越自带超市,村长让我来当水浒神出鬼没之燕云十八骑庄子传奇大明第一公靖康之耻?本太子杀到金狗叫爸爸古代世界的特种兵风暴南北赤血录穿越之我在古代搞发明大唐:我摆烂后,武则天慌了!抗日:铁血战魂,带出一个特种部队黄帝内经百姓版无敌三皇子,我狂一点怎么了朕的皇后娘娘时势造英雄,君子当有龙蛇之变崇祯大帝穿越:我是老实农夫?你们想多了快穿大秦,我和抚苏闯咸阳异世权谋:重生智者小好汉马寿灵魂错位之风云三国大唐:谁让这个驸马上朝的!天启:日月重照大明天四合院:想安生养老?看我的吧大明:这御史能处,有事他真上华夏演义:朝代更迭的史诗故事大秦:重生博浪沙,怒射张良!三国:起死回生,诸侯的噩梦我有一座时空之城重生后我把自己的恋爱脑打爆了大周夜天子带着智能手机穿越回古代当藩王