爱看读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

随后,江寒操作着电脑,心无旁骛,很快就进入了状态。

夏雨菲也不再来打扰他,拿着手机,半躺在床上,自己上网、听歌。

江寒将高老师发送来的part012.rar和part013.rar下载下来,连同夏雨菲下载的前11个文件,放在了同一个文件夹中。

然后在第1个文件上点击鼠标右键,选择用WinRAR解压缩,很快就得到了数据包。

一共两个文件,train-images-idx3-ubyte与train-labels-idx1-ubyte。

idx3-ubyte和idx1-ubyte都是自定义的文件格式,官网上就有格式说明。

train-images文件大小超过1g,保存了20万张手写数字的图片信息。

而train-labels中则存储了20万个标签数据,与train-images一一对应。

和公开版本的MNIST不同,用于比赛的这个手写数字数据集,数据量要大出好几倍。

Kaggle官方将数据集分为两部分,训练集train向参赛选手公开,而测试集test则内部保存。

比赛的形式很简单,大家根据公开的训练集,编写自己的程序,提交给主办方。

主办方用不公开的测试集数据,对这些程序逐一进行测试,然后比较它们在测试集上的表现。

主要指标是识别率,次要指标是识别速度等。

这是“人工神经网络”在这类竞技场上的初次亮相,江寒可不想铩羽而归。

事实上,如果想追求更好的成绩,最好的办法,就是弄出卷积神经网络(CNN)来。

那玩意是图像识别算法的大杀器。

在“机器学习”这个江湖中,CNN的威力和地位,就相当于武侠世界中的倚天剑、屠龙刀。

CNN一出,谁与争锋!

只可惜,这个东西江寒现在还没研究出来。

现上轿现扎耳朵眼,也来不及了。

再说,饭要一口口吃,搞研究也得一步步来。

跨度不能太大喽,免得扯到蛋……

所以在这次比赛中,江寒最多只能祭出“带隐藏层的全连接神经网络”(FCN)。

有了这个限制,就好比戴着镣铐跳舞,给比赛平添了不少难度和变数。

那些发展了几十年的优秀算法,也不见得会输普通的FCN多少。

所以,现在妄言冠军十拿九稳,还有点为时过早。

不过,有挑战才更有趣味性嘛,稳赢的战斗打起来有什么意思呢?

江寒根据官网上找到的数据格式说明文档,编写了一个文件解析函数,用来从两个train文件中提取数据。

train-images-idx3-ubyte的格式挺简单的,从文件头部连续读取4个32位整形数据,就能得到4个参数。

用来标识文件类型的魔数m、图片数量n、每张图片的高度h和宽度w。

从偏移0016开始,保存的都是图片的像素数据。

颜色深度是8位,取值范围0~255,代表着256级灰度信息,每个像素用一个字节来保存。

然后,从文件头中可以得知,每张图片的分辨率都是28×28。

这样每张图片就需要784个字节来存储。

很容易就能计算出每张图片的起始地址,从而实现随机读取。

如果连续读取,那就更简单了,只需要每次读取784个字节,一共读取n次,就能恰好读取完整个文件。

需要注意的是,图像数据的像素值,在文件中存储类型为unsignedchar型,对应的format格式为B。

所以在Python程序中,在image_size(取值为784)这个参数的后面,还要加上B参数,这样才能读取一整张图片的全部像素。

如果忘了加B,则只能读取一个像素……

train-labels-idx1-ubyte格式更加简单。

前8个字节是两个32位整形,分别保存了魔数和图片数量,从偏移0009开始,就是unsignedbyte类型的标签数据了。

每个字节保存一张图片的标签,取值范围0~9。

江寒很快就将标签数据也解析了出来。

接下来,用Matplot的绘图功能,将读取出来的手写数字图片,绘制到屏幕上。

然后再将对应的标签数据,也打印到输出窗口,两者一比较,就能很轻松地检验解析函数是否有问题。

将解析函数调试通过后,就可以继续往下进行了。

首先要将图片的像素信息压缩一下,二值化或者归一化,以提高运算速度,节省存贮空间。

像素原本的取值范围是0~255。

二值化就是将大于阈值(通常设为中间值127)的数值看做1,否则看做0,这样图片数据就转换成了由0或者1组成的阵列。

归一化也比较简单,只需要将每个像素的取值除以最大值255,那么每个像素的取值空间,就变成了介于0和1之间的浮点数。

两种手段各有利弊,江寒决定每种都试一下,看看在实践中,哪个表现更好一些。

由于江寒使用的是全连接网络,而不是卷积神经网络,所以还要将2维的图片,转换成1维的向量。

这个步骤非常简单,将二维的图片像素信息,一行接一行按顺序存入一维数组就行。

事实上,在解析数据文件的时候,已经顺便完成了这一步,所以并不需要额外的操作。

20万张图片,就是20万行数据。

将这些数据按顺序放入一个×784的二维数组里,就得到了Feature。

Lable的处理比较简单,定义一个具有20万个元素的一维整形数组,按顺序读入即可。

江寒根据这次的任务需求,将20万条训练数据划分成了2类。

随机挑选了18万个数据,作为训练集,剩余2万个数据,则作为验证集validate。

这样一来,就可以先用训练集训练神经网络,学习算法,然后再用未学习过的验证集进行测试。

根据FCN网络在陌生数据上的表现,就能大体推断出提交给主办方后,在真正的测试集上的表现。

写完数据文件解析函数,接下来,就可以构建“带隐藏层的全连接人工神经网络”FCN了。

类似的程序,江寒当初为了写论文,编写过许多次。

可这一次有所不同。

这是真正的实战,必须将理论上的性能优势,转化为实实在在、有说服力的成绩。

因此必须认真一些。

打造一个神经网络,首先需要确定模型的拓扑结构。

输入层有多少个神经元?

输出层有多少个神经元?

设置多少个隐藏层?

每个隐藏层容纳多少个神经元?

这都是在初始设计阶段,就要确定的问题。

放在MNIST数据集上,输入层毫无疑问,应该与每张图片的大小相同。

也就是说,一共有784个输入神经元,每个神经元负责读取一个像素的取值。

输出层的神经元个数,一般应该与输出结果的分类数相同。

数字手写识别,是一个10分类任务,共有10种不同的输出,因此,输出层就应该拥有10个神经元。

当输出层的某个神经元被激活时,就代表图片被识别为其所代表的数字。

这里一般用softmax函数实现多分类。

先把来自上一层的输入,映射为0~1之间的实数,进行归一化处理,保证多分类的概率之和刚好为1。

然后用softmax分别计算10个数字的概率,选择其中最大的一个,激活对应的神经元,完成整个网络的输出。

至于隐藏层的数量,以及其中包含的神经元数目,并没有什么一定的规范,完全可以随意设置。

隐藏层越多,模型的学习能力和表现力就越强,但也更加容易产生过拟合。

所以需要权衡利弊,选取一个最优的方案。

起步阶段,暂时先设定一个隐藏层,其中包含100个神经元,然后在实践中,根据反馈效果慢慢调整……

确定了网络的拓扑结构后,接下来就可以编写代码并调试了。

调试通过,就加载数据集,进行训练,最后用训练好的网络,进行预测。

就是这么一个过程。

江寒先写了一个标准的FCN模板,让其能利用训练数据集,进行基本的训练。

理论上来说,可以将18万条数据,整体放进网络中进行训练。

但这种做法有很多缺点。

一来消耗内存太多,二来运算压力很大,训练起来速度极慢。

要想避免这些问题,就要采取一定的策略。

爱看读书推荐阅读:傻子,别乱动我就养个电子宠物,你跟我说是九尾天狐?超级兵王(步千帆作品)夜玄武神至尊沈浪和苏若雪第一狂妃:废材三小姐林枫叶清雪战神叶君临李子染最新林阳苏颜全文免费阅读网络神豪之完美人生女神的超级赘婿林阳免费神州战神穿成众大佬的心尖宠杨辰秦惜妙医鸿途林阳苏颜小说最新章节免费阅读仙王的日常生活不败战神杨辰(完整)全文免费阅读全章节权门枭妻:霍少,放肆撩大院人家不败战神杨辰(完整)重生后她手撕了反派剧本权宠天下(元卿凌宇文皓)洛九针冠上珠华凌天战魂重生八零:长姐当家绝色校花的近身兵王韩娱之影帝重生九零乱晴秋权门贵嫁秦时天行者重生神医嫡女不好惹弃婿归来对手这丞相夫人我不当了不败战神秦惜杨辰神针侠医养个狼崽子当权臣绝代掌教盛世凰谋:天妃第一继承人重生嫁恶霸韩娱之灿大国名厨专属偏爱:冷少情定宝贝妻超武女婿克夫农女倾富天下我有一个超能终端
爱看读书搜藏榜:宠婚为爱:甜妻你好文娱:我被黑成了娱乐圈大佬轮回新世规则兄弟!boss偏执宠:小娇妻,真甜!甜妻动人,霸道总裁好情深山村小药神豪门情夺之黑莲逆袭特勤精英九天无神官路登天逆袭,不服输的人生最精彩!漫威里的次元餐厅玉谋不轨四合院:我能采摘别人技能戒不掉的喜欢重生后我不用做寡妇了你是我心里说不出的痛日娱之遇见那些人开局尘遁换木遁,我被全网笑惨了田园医女之傲娇萌夫惹不得不是直播民生吗,你怎么成全能了尊主的巨星之路四合院:秦淮茹,我对寡妇没有兴独家蜜婚:帝少宠妻太深度都市仙途异能反派,求求你给主角留点活路吧学园异战录喷人就变强:我怼哭了百万毒鸡汤命运两头设堵我却左右逢源贵夫临门祸害娱乐圈,你说自己是正经人?巨星大导演庶福良缘重生日本之剑道大魔王哼!我的总裁大人说好断绝关系,你们后悔算什么?我的人工智能可以升级御兽:我契约的都是上古禁忌彪妻重生重生1990,带着全村人发家致一拳和尚唐三藏快穿:宠妻男二走上人生巅峰总有人爱你如命大侠等一等抗战之我每天一个签到大礼包[综]一梦经年破产千金逆风翻盘快穿攻略,黑化女配要洗白离婚后,我上离婚综艺被疯抢,前妻跪求复合
爱看读书最新小说:重生年代,燃情岁月美综1999政道巅峰重生渔村:开局赶海喂饱全家重生1978,假少爷赶山带领全家走向富裕卡牌融合,开局一张黄巾士卒卡!领证才知道已婚,老婆是女魔头饥荒?不存在的,我打猎养活全家四合院:开局踢废贾东旭带娃上综艺,孩她妈杨蜜求我收敛顶级旗袍女神,每天都在倒贴我反派权势滔天,开局拿下美艳女星村医和七个女邻居我修炼了万载成了仙帝重生七零:迎娶姐妹花,打猎崛起为了家族我只能一门三不绝今日放晴恋综:别人谈恋爱,你把后厨端了震惊!我包养的校花是京圈大小姐臭小子,我可是你师父!不是要对竹马报恩吗,离婚哭什么高武风暴重生校园:从雇佣高冷校花当女仆还债开始撼天动地,开局觉醒震动之力!我睡觉能提升天赋!开局十连满命,天道求我别开挂攻略失败,被病娇女主强制爱娱乐,踢了个混子,乐队就解散了重生80:从深山打猎开始致富穿越成校园受气包?看我推演成神!穿书变强,你说反派全到现实了?相声:让你代管青年队,全成角了鹰酱:建国初期,你家六代机升空了?一秒加一个汉堡,女神跪求我收留从一条泥鳅走蛟化龙,全世界震惊闫解放在四合院的时光每天五选一,我不无敌谁无敌?四合院之何家双子星混在半岛当大佬合约结束他离开,前妻带娃悔断肠反派炮灰:校花青梅对我死缠烂打?我有人格切换器!白昼废柴夜晚人间兵器开局被欺辱,我觉醒系统杀穿高武给点面子,我曾经是兵王啊!你们怎么脆脆的啊,一碰就死四合院:开局送易不群进监狱四合院:毁灭岛国,小马拉大车修罗场全开!校花们都想攻略我都市红尘仙!人在现代,系统晚到八十年