爱看读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

随后,江寒操作着电脑,心无旁骛,很快就进入了状态。

夏雨菲也不再来打扰他,拿着手机,半躺在床上,自己上网、听歌。

江寒将高老师发送来的part012.rar和part013.rar下载下来,连同夏雨菲下载的前11个文件,放在了同一个文件夹中。

然后在第1个文件上点击鼠标右键,选择用WinRAR解压缩,很快就得到了数据包。

一共两个文件,train-images-idx3-ubyte与train-labels-idx1-ubyte。

idx3-ubyte和idx1-ubyte都是自定义的文件格式,官网上就有格式说明。

train-images文件大小超过1g,保存了20万张手写数字的图片信息。

而train-labels中则存储了20万个标签数据,与train-images一一对应。

和公开版本的MNIST不同,用于比赛的这个手写数字数据集,数据量要大出好几倍。

Kaggle官方将数据集分为两部分,训练集train向参赛选手公开,而测试集test则内部保存。

比赛的形式很简单,大家根据公开的训练集,编写自己的程序,提交给主办方。

主办方用不公开的测试集数据,对这些程序逐一进行测试,然后比较它们在测试集上的表现。

主要指标是识别率,次要指标是识别速度等。

这是“人工神经网络”在这类竞技场上的初次亮相,江寒可不想铩羽而归。

事实上,如果想追求更好的成绩,最好的办法,就是弄出卷积神经网络(CNN)来。

那玩意是图像识别算法的大杀器。

在“机器学习”这个江湖中,CNN的威力和地位,就相当于武侠世界中的倚天剑、屠龙刀。

CNN一出,谁与争锋!

只可惜,这个东西江寒现在还没研究出来。

现上轿现扎耳朵眼,也来不及了。

再说,饭要一口口吃,搞研究也得一步步来。

跨度不能太大喽,免得扯到蛋……

所以在这次比赛中,江寒最多只能祭出“带隐藏层的全连接神经网络”(FCN)。

有了这个限制,就好比戴着镣铐跳舞,给比赛平添了不少难度和变数。

那些发展了几十年的优秀算法,也不见得会输普通的FCN多少。

所以,现在妄言冠军十拿九稳,还有点为时过早。

不过,有挑战才更有趣味性嘛,稳赢的战斗打起来有什么意思呢?

江寒根据官网上找到的数据格式说明文档,编写了一个文件解析函数,用来从两个train文件中提取数据。

train-images-idx3-ubyte的格式挺简单的,从文件头部连续读取4个32位整形数据,就能得到4个参数。

用来标识文件类型的魔数m、图片数量n、每张图片的高度h和宽度w。

从偏移0016开始,保存的都是图片的像素数据。

颜色深度是8位,取值范围0~255,代表着256级灰度信息,每个像素用一个字节来保存。

然后,从文件头中可以得知,每张图片的分辨率都是28×28。

这样每张图片就需要784个字节来存储。

很容易就能计算出每张图片的起始地址,从而实现随机读取。

如果连续读取,那就更简单了,只需要每次读取784个字节,一共读取n次,就能恰好读取完整个文件。

需要注意的是,图像数据的像素值,在文件中存储类型为unsignedchar型,对应的format格式为B。

所以在Python程序中,在image_size(取值为784)这个参数的后面,还要加上B参数,这样才能读取一整张图片的全部像素。

如果忘了加B,则只能读取一个像素……

train-labels-idx1-ubyte格式更加简单。

前8个字节是两个32位整形,分别保存了魔数和图片数量,从偏移0009开始,就是unsignedbyte类型的标签数据了。

每个字节保存一张图片的标签,取值范围0~9。

江寒很快就将标签数据也解析了出来。

接下来,用Matplot的绘图功能,将读取出来的手写数字图片,绘制到屏幕上。

然后再将对应的标签数据,也打印到输出窗口,两者一比较,就能很轻松地检验解析函数是否有问题。

将解析函数调试通过后,就可以继续往下进行了。

首先要将图片的像素信息压缩一下,二值化或者归一化,以提高运算速度,节省存贮空间。

像素原本的取值范围是0~255。

二值化就是将大于阈值(通常设为中间值127)的数值看做1,否则看做0,这样图片数据就转换成了由0或者1组成的阵列。

归一化也比较简单,只需要将每个像素的取值除以最大值255,那么每个像素的取值空间,就变成了介于0和1之间的浮点数。

两种手段各有利弊,江寒决定每种都试一下,看看在实践中,哪个表现更好一些。

由于江寒使用的是全连接网络,而不是卷积神经网络,所以还要将2维的图片,转换成1维的向量。

这个步骤非常简单,将二维的图片像素信息,一行接一行按顺序存入一维数组就行。

事实上,在解析数据文件的时候,已经顺便完成了这一步,所以并不需要额外的操作。

20万张图片,就是20万行数据。

将这些数据按顺序放入一个×784的二维数组里,就得到了Feature。

Lable的处理比较简单,定义一个具有20万个元素的一维整形数组,按顺序读入即可。

江寒根据这次的任务需求,将20万条训练数据划分成了2类。

随机挑选了18万个数据,作为训练集,剩余2万个数据,则作为验证集validate。

这样一来,就可以先用训练集训练神经网络,学习算法,然后再用未学习过的验证集进行测试。

根据FCN网络在陌生数据上的表现,就能大体推断出提交给主办方后,在真正的测试集上的表现。

写完数据文件解析函数,接下来,就可以构建“带隐藏层的全连接人工神经网络”FCN了。

类似的程序,江寒当初为了写论文,编写过许多次。

可这一次有所不同。

这是真正的实战,必须将理论上的性能优势,转化为实实在在、有说服力的成绩。

因此必须认真一些。

打造一个神经网络,首先需要确定模型的拓扑结构。

输入层有多少个神经元?

输出层有多少个神经元?

设置多少个隐藏层?

每个隐藏层容纳多少个神经元?

这都是在初始设计阶段,就要确定的问题。

放在MNIST数据集上,输入层毫无疑问,应该与每张图片的大小相同。

也就是说,一共有784个输入神经元,每个神经元负责读取一个像素的取值。

输出层的神经元个数,一般应该与输出结果的分类数相同。

数字手写识别,是一个10分类任务,共有10种不同的输出,因此,输出层就应该拥有10个神经元。

当输出层的某个神经元被激活时,就代表图片被识别为其所代表的数字。

这里一般用softmax函数实现多分类。

先把来自上一层的输入,映射为0~1之间的实数,进行归一化处理,保证多分类的概率之和刚好为1。

然后用softmax分别计算10个数字的概率,选择其中最大的一个,激活对应的神经元,完成整个网络的输出。

至于隐藏层的数量,以及其中包含的神经元数目,并没有什么一定的规范,完全可以随意设置。

隐藏层越多,模型的学习能力和表现力就越强,但也更加容易产生过拟合。

所以需要权衡利弊,选取一个最优的方案。

起步阶段,暂时先设定一个隐藏层,其中包含100个神经元,然后在实践中,根据反馈效果慢慢调整……

确定了网络的拓扑结构后,接下来就可以编写代码并调试了。

调试通过,就加载数据集,进行训练,最后用训练好的网络,进行预测。

就是这么一个过程。

江寒先写了一个标准的FCN模板,让其能利用训练数据集,进行基本的训练。

理论上来说,可以将18万条数据,整体放进网络中进行训练。

但这种做法有很多缺点。

一来消耗内存太多,二来运算压力很大,训练起来速度极慢。

要想避免这些问题,就要采取一定的策略。

爱看读书推荐阅读:最佳影星都市赢家人生特勤精英独家蜜婚:帝少宠妻太深度Boss生猛:总裁,我有了龙王医婿全文免费阅读穿书后,恶女成了团宠小娇娇表白被拒,转头闪婚了天仙的妈妈重生初中:神医学霸小甜妻都市绝品少年这是重生吗?这是黑道发家史啊!惹火狂妻:邪帝,好闷骚回到92:开局被俩大舅哥投河毒妇重生向善记都市之国术无双来自秦朝的你保安情缘春归郎未知拒嫁豪门:误惹天价首席我就捡个垃圾,全世界追杀我?末世重生之女王来袭当贤夫我是认真的影后有个学霸红包群回乡隐居,无常识少女赖上我娱乐:整顿职场后我打造文娱盛世丑女种田:山里汉宠妻无度重生之生化帝国失心前妻很抢手华娱璀璨时代拥有神豪系统,美女左拥右抱春风十里玉门关顶级世家的神豪阔少赘婿被退婚,不装了我是大佬高武之超级系统穿成恶毒女配带飞反派全家重生后大佬撕了炮灰剧本在六爷心上放个火糙汉的神医小娇妻是朵黑莲花刀镇星河东京,有恶灵世子爷,这外室又在给您画大饼!半仙直播算命大哥你老婆有双夫命妙手狂兵1627崛起南海乡村上门医婿人在做!天在看!反派:你怎么也有系统智能生命春花人在乡村,医名远播我的三位师尊风华绝代
爱看读书搜藏榜:宠婚为爱:甜妻你好文娱:我被黑成了娱乐圈大佬兄弟!boss偏执宠:小娇妻,真甜!甜妻动人,霸道总裁好情深山村小药神豪门情夺之黑莲逆袭特勤精英九天无神官路登天逆袭,不服输的人生最精彩!漫威里的次元餐厅玉谋不轨四合院:我能采摘别人技能戒不掉的喜欢重生后我不用做寡妇了你是我心里说不出的痛日娱之遇见那些人田园医女之傲娇萌夫惹不得不是直播民生吗,你怎么成全能了尊主的巨星之路四合院:秦淮茹,我对寡妇没有兴独家蜜婚:帝少宠妻太深度学园异战录喷人就变强:我怼哭了百万毒鸡汤命运两头设堵我却左右逢源贵夫临门祸害娱乐圈,你说自己是正经人?巨星大导演庶福良缘重生日本之剑道大魔王哼!我的总裁大人说好断绝关系,你们后悔算什么?我的人工智能可以升级御兽:我契约的都是上古禁忌彪妻重生重生1990,带着全村人发家致一拳和尚唐三藏总有人爱你如命大侠等一等抗战之我每天一个签到大礼包[综]一梦经年破产千金逆风翻盘快穿攻略,黑化女配要洗白快穿之主角是用来虐的纵横人生三千年半夜两点,我从火车站下车试婚进行时不负山河不负卿无上神帝
爱看读书最新小说:希望的田野上陪女神聊天,越撩越有钱恋综:没吃过恋爱的苦,我想试试软萌校花太粘人,我好爱提升员工工资,你说我扰乱市场?权力巅峰:从乡镇税务局开始高手下山,五位师姐助我发家致富从前有个协谷镇当世界只能由一人拯救高武:从继承李氏开始老婆大明星,我在家带娃玩军火!重生非洲,我成了奥德彪终末的十二神座运掌乾坤:我的都市外挂开局小火龙,这我怎么输啊?超时空交易:我的任意门去万界爱已远去:从舔狗到赢家的蜕变女儿求救,十万大军齐聚从量子机开始,突破美西方封锁别拿火球不当球三哥与凤姐的浪漫爱情故事我在鹰酱当杀手御兽,我的契约兽超震惊!!!女总裁求复合遥远的回航重生电工也能牛上天哥斯拉会动,养在动物园不合理?我一个算命的居然能斩神逆天行万里大一实习,你跑去749收容怪物娱乐:回到过去,靠国足起家顶尖掮客执剑师许愿系统:许愿就能无敌开局尖刺蜘蛛,进化阴影主宰!明州小医生左蜜右菲,我还是太全面了每升百级,实力提高1级宇宙文明到第九区去渣男系统:在恋爱游戏里大放异彩成为反派,我该做什么?狩劫之日乡村御兽神医峰宇之恋大国重器:开局省下百亿军费蓝星要灭?哥们,包活的祸害都市,醉卧美人膝快灵气复苏了我提前成仙不过分吧女尊世界,从胖子逆袭为男神!狂牛出狱